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Abstract

We study the role of tier design in Medicare Part D. In the period 2013-2017, plans

expanded the number of tiers in their formularies from three/four to five and system-

atically shifted generics to higher tiers subject to higher cost sharing. The systematic

tier upgrading caused significant increases in the out-of-pocket costs, up to 6 times for

some generics. This resulted in additional average per-enrollee spending on generics of

$76 in 2017, totalling $1.5 billion for the Part D population, and increased mortality

by 5.4% due to reduced utilization of generics with documented mortality benefits.
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1 Introduction

In industries characterized by complex products or services, consumers may be unable to

process every detail, allowing firms to leverage the complexity of their offers to increase

profits (Ellison and Ellison 2009; Carlin 2009; Armstrong and Chen 2009). Medicare Part

D contracts are notoriously complex: the price is a combination of a premium, a deductible,

and non-linear coverage rates that dynamically depend on utilization throughout the year

(Dalton, Gowrisankaran, and Town 2019). This makes comparisons difficult: as premiums

are clear and certain, while future consumption is not, enrollees tend to base their plan

choices mostly on premiums rather than on cost sharing or drug coverage (Handel and

Kolstad 2015; Abaluck and Gruber 2011; Abaluck and Gruber 2016; Decarolis, Polyakova,

and Ryan 2020). Whereas inertia in enrollees’ plan choice led to a steady rise of premiums

and triggered stricter regulations around premium setting (Marzilli Ericson 2014; Decarolis

2015; Ho, Hogan, and Scott Morton 2017; Fleitas 2020), the structure of formularies has

remained relatively unregulated.

In this paper, we study strategic tier design in Medicare Part D. Plans are required to

cover at least two drugs in the most commonly prescribed categories and all drugs that

treat certain conditions. However, insurers are free to choose both the type (copayment or

coinsurance) and the level of cost sharing, which usually increases in the tier, as long as the

plan is actuarially equivalent to a standard plan. Insurers use the tier structure to steer con-

sumption to cheaper types of medical care. First, since cheaper therapeutically equivalent

substitutes (mostly generics) are provided at lower cost sharing, the tier structure increases

demand elasticity to price and insurers’ bargaining power vis-à-vis drug manufacturers, driv-

ing list prices down (Duggan and Scott Morton 2010; Olssen and Demirer 2021). Second,

plans that bundle pharmaceutical and medical benefits internalize the externality of drug

utilization on inpatient hospitalization, thus offering more generous drug coverage (Lavetti

and Simon 2018; Starc and Town 2019).
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We use publicly available data on formularies, enrolment, and drug utilization for Medi-

care Part D stand-alone prescription drug plans between 2013 and 2017 to investigate tier

design by insurers and their impact on enrollees’ out-of-pocket costs, demand, and spending

for generics. We document that, over this period, plans made larger use of five-tiered for-

mularies, which include two generic tiers, two brand tiers, and a specialty tier. Over time,

plans increasingly placed generics in higher tiers (Avalere 2018; Fix, Brennan, Donthi, and

Whorley 2022), even those usually reserved for branded drugs and subject to higher cost

sharing—effectively making the cheapest available treatments more expensive for millions of

enrollees. This shrunk the size of the first tier (with the lowest cost sharing), traditionally

devoted to generics, which in 2017 included three times fewer drugs than in 2013.

To quantify the effect of tier shifting on out-of-pocket costs, we exploit variation across

generic drugs that were moved to higher tiers. To address the endogeneity of tier place-

ment, we leverage the rules on actuarial equivalence and build an instrument that links the

probability of tier shifting for each drug to the distance between the effective cost-sharing in

the plan and 25%, the rule for the standard plan. The systematic tier upgrading of gener-

ics caused an increase in the out-of-pocket costs for the average monthly supply of 6 times

for high value generics and of 0.4 times for other generics. This is not due to a handful

of high-utilization drugs or a few high-enrolment plans, but affected expensive and cheap

generics alike and was so widespread that, even if a sophisticated enrollee could perfectly

adjust drug choices (for example choosing therapeutic substitutes in lower tiers) or switch

plan, they would still face higher out-of-pocket costs in 2017 than in 2013. We exclude that

this increase in out-of-pocket costs was due to a generalized increase in drug prices.

To assess some of the consequences of higher out-of-pocket costs due to tier upgrading of

generics, we rely on drug utilization data and estimate a demand model linking purchases of

generics to their tier placement. To overcome the endogeneity of tier placement in demand

estimation, we build Hausman-type instruments (Hausman 1996; Nevo 2001). We instrument
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the tier of a specific drug in a region with the average tier of the same drug in other regions.

Controlling for drug, region, and year fixed effects, and excluding shared formularies from

the computation, the validity of this instrument rests on the absence of residual aggregate

demand shocks that could lead to nation-wide tier shifting of a drug across plans.

We estimate low price elasticities in line with those by Einav, Finkelstein, and Polyakova

(2018), but still large enough to reduce consumption compared to a counterfactual scenario

in which generics had remained in the same tier as in 2013. Our results illustrate that the av-

erage enrollee spent $76 more on generic drugs in 2017 due to tier upgrading. Enrollees who

instead adhered to therapy in spite of the higher out-of-pocket costs spent $100 more. Col-

lectively, these increases correspond to an additional $1.5 billions in out-of-pocket spending

for the Medicare Part D population in 2017.

Notably, the generics in our sample include high value medications with documented

mortality benefits: if utilization dropped due to higher out-of-pocket costs, enrollees may

have suffered adverse health outcomes. A back-of-the-envelope calculation in the spirit of

Chandra, Flack, and Obermeyer (2021) shows that reduced utilization due to tier upgrading

for drugs in classes with documented mortality benefits resulted in increases in mortality by

5.4%. We also document an additional welfare-decreasing effect of tier upgrading: contrary

to what insurance theory deems optimal (Besley 1988; Feldstein 1973; Einav, Finkelstein,

and Polyakova 2018), the generics moved to higher tiers were those with lower demand

elasticity to price, hence those less prone to moral hazard. By distorting the optimal cost

sharing balancing risk protection and moral hazard, tier upgrading may have thus negatively

affected welfare beyond reductions in utilization and increases in spending.

We interpret our results as lower bounds for the effects of tier shifting on expenditures and

welfare, as our estimates do not capture the full substitution across drugs, health outcomes,

and public spending. First, the combination of higher cost sharing for generics and the

increasing role of rebates may favor brand-name medications (Dafny, Ody, and Schmitt
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2017; Dubois and Lasio 2018; Dusetzina, Jazowski, Cole, and Nguyen 2019). In turn, lower

use of generics may affect long-run entry decisions of generic manufacturers, leading to even

fewer alternatives, lower competition, and further risk of shortages in the future (Berndt,

Conti, and Murphy 2017). Higher cost sharing may also result in higher public spending.

For enrollees with the low-income subsidy, Medicare fully covers the out-of-pocket costs.

Also, enrollees may reach the catastrophic coverage threshold at a faster pace ($4,950 in

2017), after which Medicare covers 80% of the expenses. Finally, lower therapy adherence

may result in inefficient substitution to other types of medical care (Chandra, Gruber, and

McKnight 2010; Starc and Town 2019), with the potential for increased hospitalization and

higher costs for society.

The rest of the paper is organized as follows. Section 2 describes the empirical setting

and data. Section 3 provides evidence of the systematic tier upgrading of generics. The

impact of tier upgrading on out-of-pocket costs is studied in Section 4 and on demand and

total spending in Section 5. Section 6 discusses some welfare implications of tier upgrading.

Section 7 concludes.

2 Data

We use three sources of data from Medicare Part D, available from the Centers for Medicare

and Medicaid Services (CMS). First, we rely on formulary data from 2013-2017 to retrieve

information on the characteristics of the formulary for each plan-year: the list of drugs

identified by their unique National Drug Code (NDC), the tier they belong to, the cost

sharing rules, and plan-level list prices (for 2013 and 2017 only). We use the NDC to

identify the Anatomical Therapeutic Chemical (ATC) codes from the WHO for each drug,

as well as the drug type (branded/generic). Second, we use the Prescriber Event file to

recover quantities (in 30-day supply) and the total cost for each drug. Finally, we refer to

4



enrolment data to compute plan-level market shares.

Following Einav, Finkelstein, and Polyakova (2018), a drug is defined by its non-proprietary

name and whether it is branded or generic. If a drug appears in several tiers, we consider

the lowest; if it appears in different dosages or forms in the same tier, we consider the least

expensive version. A drug class is defined at the level 4 of the WHO ATC classification

(ATC4), our measure of the product market. We follow the literature and exclude from the

analysis drug classes with less than 100,000 claims over the period 2013-2017 for the main 34

geographical markets. Quantities are defined in 30-day supply units. We combine plan-level

formulary data and enrolment shares to recover the average tier of a drug in a given market

for a given year. We deflate list prices and OOP costs using the US CPI with 2013 as the

base year.

We focus on stand-alone prescription drug plans (PDPs). We observe 1,471 distinct PDPs

between 2013 and 2017. 441 plans are present throughout the period, while 420 enter and

782 exit. Towards the end of the period, plan consolidation due to mergers led the number

of plans to decline (−15% between 2016 and 2017), a tendency started around 2015. At the

same time, differentiation increased, with several insurers offering at least one basic plan

and one enhanced plan per region. Plans differ along several dimensions, mainly premiums

and generosity (deductible, cost sharing, and coverage). On average, premiums remained

approximately constant or decreased slightly throughout the period.

Formularies covered on average 1,123 drugs in 2013 (around 49% generics) and 1,180 in

2017 (around 53% generics), slightly expanding over time as a consequence of both branded

and generic entry. Five-tiered formularies became the norm in later years: they usually

include two generic tiers (preferred and non-preferred), two brand tiers (preferred and non-

preferred), and a single specialty drug tier. Since 2017, CMS allowed the non-preferred

brand tier to be replaced by a less restrictive non-preferred drug tier, which could include

also generics. Some plans include a sixth tier for injectable drugs.
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3 Tier Upgrading for Generics

Figure 1 documents a systematic shift of generics from lower to higher tiers in the period

2013-2017. Figure 1(a) illustrates how, in 2013, around 90% of all generics across plans

belonged to tier 1 or 2, with 220 distinct drugs in tier 1. By 2017, only around half of all

generics were in tier 1 or 2. Tier 1 had on average shrunk in size to 73 distinct drugs, losing

roughly two thirds of the generics. Higher tiers, associated to higher cost sharing, saw an

influx of drugs, both branded and generics. Although some of these were new and expensive,

which could justify higher cost sharing, most of the shift is attributable to older generics,

predominantly upgraded to tier 2 (non-preferred generics) (Figure 1(b)). The bottom panels

of Figures 1(a) and (b) conversely show that tier shifting for branded drugs was limited.

The number of branded drugs in tiers 3 and 4 remained stable, while the increase in the size

of tier 5 was mostly attributable to the entry of expensive branded drugs. Indeed, in more

than 90% of the plans, tier 5 is a specialty tier restricted to drugs with a list price for 30-day

supplies above $600. Insurers were allowed to offer a sixth tier for “selected care” drugs

associated with a $0 copayment. As illustrated by Figures 1(a) and 1(b), very few plans

used this sixth tier. Overall, this suggests that generic rather than branded drugs tended to

be upgraded to higher tiers in 2013-2017, and this will be the focus of the paper.

Figure 1(c) shows the transition probability of a drug with a certain tier in 2013 (x-axis)

to another tier in 2017 (y-axis). Nearly 40% of the drugs available in both years were moved

up by one or two tiers. Conversely, transitions to lower tiers were limited (fewer than 8% of

drugs). Interestingly, many generics were also available in tier 3 and 4, mainly devoted to

branded drugs, more so in the last years: cheap generics (priced $10-50) increased by 28%

their presence in tiers 3 and 4 (non-preferred drugs) (Figure 1(d)). This pattern also holds

for the most prescribed generic drugs, the top 10 prescribed classes, and those for which

CMS mandates that all drugs should be covered in all formularies. This is consistent with

Oster and Fendrick (2014), who show that even guideline-recommended medications were
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often moved out of tier 1 to higher tiers.

4 Changes in Out-Of-Pocket Costs

Higher tiers imply higher cost sharing within a plan. In our data, generics moved to higher

tiers, on average, experience a doubling in OOP costs: between tier 1 and 2, copayment

increased from around $1 to more than $3 in 2017. Generics that are not moved to higher

tiers instead display a stable or even decreasing trend in cost sharing since, conditional on

tier, plans slightly reduced coinsurance rates. While changes in OOP costs of generics over

time are driven by various concurring factors, in this section we attempt to isolate the part

due to tier upgrading.

We consider OOP costs for 30-day supply in a preferred pharmacy network in the initial

coverage phase of the plan. We denote by ∆OOPjpr and by ∆Tierjpr the changes, respec-

tively, in out-of-pocket costs and in tier between 2013 and 2017 for drug j in plan p offered

in region r, and estimate the following regression:

∆OOPjpr = β0 + β1k∆Tierjpr + δj + δp + εjpr. (1)

We allow the coefficient on ∆Tierjpr to differ across two categories of drugs k ∈ {High Value,

Others}. We follow Chandra, Flack, and Obermeyer (2021) and define a drug to be high

value if clinical trials demonstrate large mortality benefits.1 To account for drug-specific

changes in OOP costs across plans and regions, we include drug fixed effects δj and weigh

each observation by the quantity of the corresponding drug-region in 2013. We also include

plan fixed effects δp, which control for changes in plan design that may have affected all

drugs in a plan, such as changes in the cost sharing rules for all tiers.

1High value drugs include statins, ACE inhibitors, β-blockers, thiazide diuretics, calcium channel blockers,
angiotensin receptor blockers, diabetes drugs, and inhalants.
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Figure 1: Generics moved to higher tiers
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Notes: Figure 1(a) counts the average number of distinct drugs per tier from 2013 to 2017 across plans.
Figure 1(b) does the same, fixing the set of plans and drugs as observed in 2013. Average tier size is displayed
for generics and branded drugs separately. Figures 1(c) and 1(d) focus on tiers up to the fourth: we exclude
drugs with list prices per 30-day supply above $600 ($670 in 2017), since they are eligible for a specialty tier
intended for expensive drugs. Figure 1(c) maps generic drugs from their tier in 2013 to their tier in 2017.
Figure 1(d) shows the change in the distribution of generics across tiers within a certain price group, where
price groups are computed on the basis of 2013 list prices.
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Because formulary design is ultimately a choice of the insurer, we consider ∆Tierjpr

as potentially endogenous and estimate regression (1) using an instrumental variable that

leverages the relative generosity of plan p for drug j in 2013 compared to the Medicare

standard plan. All Medicare Part D plans are required to be at least actuarially equivalent

to the government-designed standard plan, which offers a uniform 25% coinsurance rate in

the cost-sharing arm above the deductible and below the donut hole. To meet actuarial

equivalence, insurers face an incentive to shift to higher tiers those drugs for which the

plan is more generous than the standard one, i.e. with a coinsurance lower than 25%. For

each drug j in plan p, we then compute the difference between the 2013 drug-plan specific

coinsurance (as a percentage of the list price) and 25%, and use this as an instrument for

∆Tierjpr.

Table 1, column 1, reports the weighted least squares (WLS) estimates of regression

(1), while column 2 reports the corresponding weighted two-stage least squares (W2SLS)

estimates. Compared to generics that did not change tier between 2013 and 2017, those that

were moved up experienced an increase in OOP costs of $10.6. The strong first stage results

(panel B) and the difference in the estimates between columns 1 and 2 (panel A) suggest

that, indeed, formulary design may be endogenous and that insurers did not move generics to

higher tiers at random, but rather moved those with OOP costs expected to increase less or

even decrease over the period (WLS appears to be downward biased). The relative increase

in OOP costs associated to generics that were moved to a higher tier is substantial (column

3): $12.6 for high value generics and $9.5 for the others, amounting to a 6 times increase for

high value generics and a 0.4 times increase for the other generics.2 In columns 4 (WLS), 5

and 6 (W2SLS) of Table 1, we estimate a regression analogous to (1) using changes in the

list prices of generics between 2013 and 2017 as the dependent variable. These estimates

illustrate that the generics moved to higher tiers were not those with relatively increasing

2From column 3, Table 1, we compute 6 and 0.4 as, respectively, 12.62−1.8
1.8 and 9.45−6.8

6.8 .
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Table 1: Effect of tier shifting on out-of-pocket costs and list prices

(1) (2) (3) (4) (5) (6) (7)
∆OOP Plan level ∆List price Aggregate list price

WLS W2SLS W2SLS WLS W2SLS W2SLS WLS

A. Effect of tier shifting

∆Tier 5.929 10.60 3.112 -6.548
(0.0273) (0.109) (0.0787) (0.304)

1High Value ×∆Tier 12.62 -3.170
(0.179) (0.507)

(1− 1High Value)×∆Tier 9.446 -8.478
(0.107) (0.305)

1High Value × Y ear -1.172
(0.0480)

(1− 1High Value)× Y ear -1.221
(0.0386)

B. First Stage

Dist 25 0.732 0.732
(0.00594) (0.00594)

1High Value ×Dist 25 0.552 0.552
(0.00752) (0.00752)

(1− 1High Value)×Dist 25 0.858 0.858
(0.00674) (0.00674)

Weak IV Fstat 15,205 8,197 15,205 8,197

Observations 195,534 195,534 195,534 195,534 195,534 195,534 102,296
R-squared 0.476 0.074 0.103 0.431 -0.069 -0.068 0.924
Mean Y 6 6 -2.3 -2.3 122.2
Mean Y High value 1.8 .70 53.4
Mean Y (1-High value) 6.8 -2.9 134.4
Mean ∆ tier .8 .8 .8 .8
Mean ∆ tier High value .4 .4
Mean ∆ tier Others .8 .8
Drug FE X X X X X X X
Plan FE X X X X X X
Market FE X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Columns 1 to 3 report WLS (weighted least squares) and W2SLS
(weighted two-stage least squares) estimates of regression (1), where the the first stage regressions are
reported in panel B. The sample excludes drugs with list prices per 30-day supply above $600 ($670 in 2017),
given their eligibility for a specialty tier intended for expensive drugs. All regressions include drug fixed
effects and weigh each observation by the quantity of the corresponding drug-region combination in 2013.
“High Value” generics are defined following the classification from Chandra, Flack, and Obermeyer (2021)
(see footnote 1). As an instrument for ∆Tierjpr, we leverage the distance between the cost sharing in 2013
and the standard benefit cost sharing rule (25%). Columns 4 to 6 perform similar regressions using ∆List
price as dependent variable. Column 7 reports estimates of the list price variation across years using market
level data for each generics from the Medicare Part D Event file.
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list prices. More broadly, column 7 of Table 1 shows that the list prices of generics did

not increase over the period 2013-2017. These findings suggest that the generalized tier

upgrading observed in the period 2013-2017 was not motivated by higher costs of generics

for insurers.

Allowing for drug and plan choice adjustments, OOP still increased. In response

to increasing OOP costs for those generics that were moved to higher tiers, enrollees may

have re-optimized their drug or plan choices. First, some may have switched to therapeutic

substitutes at the ATC4 level that were more generously covered. Yet, while in 2013 40%

of drug classes (ATC4) had an alternative in tier 1, only 17% had one in 2017. In addition,

some enrollees may have switched to plans with lower cost sharing for the drugs that treat

the same condition. Although the existing literature has shown that this behavior is not

common and plan choices display significant inertia, we allow for this possibility and compute

the lowest OOP cost across the plans available in a given Part D market in 2013 and 2017

for a hypothetical enrollee who purchased a drug with a generic available in 2013.

Figure 2 summarizes these results. Despite high dispersion, Figure 2 clearly shows an

upward trend in the OOP costs needed to purchase a 30-day supply of a generic drug. In

Figure 2(a), more than 90% of drug-market combinations are on or above the 45 degree line

(of which 70% are strictly above). Allowing for broader substitution at the class level, in

Figure 2(b) more than 95% of the combinations are on or above the 45 degree line (of which

50% are strictly above). Hence, tier upgrading increased OOP costs even for the most savvy

enrollees. In section 5, we enrich this exercise on the basis of the estimated effect of tier

upgrading on purchased quantities and OOP spendings.
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Figure 2: Minimum out-of-pocket costs increase
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Notes: The figure plots the minimum OOP cost in each Medicare Part D market in 2017 against its corre-
sponding value in 2013. The minimum is computed in panel (a) at the molecule level and in panel (b) at the
ATC4 level, allowing for substitution to the cheapest molecule within a drug class. We focus on molecules
for which at least one generic was available in 2013.

5 Changes in Quantity and Spending

To shed light on the consequences of tier upgrading of generics on enrollees, we first investi-

gate its effect on the demand for generics.

We define quantity Qjrt as the 30-day supply of a generic drug j, Medicare Part D region

r, and year t. We estimate the following regression:

log(Qjrt) = α0 + α1kTierjrt +Xjrtα2 + ζj + ζr + ζt + νjrt, (2)

where k ∈ {High Value, Others}. We compute Tierjrt as the weighted average of the tiers

which generic drug j belongs to in each plan, using enrolment weights, and round it to the

nearest integer.3 Xjrt includes as controls generic drug coverage in the market (share of

plans), entry at the ATC4 level, coverage of the branded alternative (share of plans), and

size of the market (in number of enrollees).

3Using non-rounded measures of average tier at the market level yields similar estimates.
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Similar to the price regression (1), Tierjrt in regression (2) is likely to be endogenous:

generic drugs with larger unobserved components of demand may be placed in higher tiers

to monetize a positive demand shock. We build a Hausman-type instrument for Tierjrt

(Hausman 1996; Nevo 2001) as the average tier of generic j in regions other than r. This

is expected to correlate with Tierjrt due to the common components of cost incurred by

insurers for offering generic j in their plans independently of the region (e.g., bargaining of

insurers with drug manufacturers), but should be uncorrelated with the local demand shock

νjrt. Controlling for drug, region, and year fixed effects, the validity of this instrument rests

on the absence of residual aggregate demand shocks correlated both with νjrt and with νjr′t,

r′ 6= r, and that led to a national-wide tier shifting for generic j across plans.

Given that insurers may use the same formulary in several Part D regions, generic j’s tier

in region r′ could correlate with νjrt through a common formulary used both in regions r′

and r. Hence, we exclude common formularies from the instrument. Moreover, we check the

robustness of our results by adding region-specific time trends and drug class (ATC3)-specific

time trends meant to capture residual nation-wide demand shocks that may invalidate our

instrument.

13



Table 2: The Effect of Tier on Demand, 2013-2017

(1) (2) (3) (4) (5) (6)
OLS 2SLS 2SLS 2SLS 2SLS 2SLS

A. Effect of tier on log(Qjrt)

Tier -0.0324 -0.173 -0.204 -0.155 -0.191
(0.00466) (0.0249) (0.0299) (0.0318) (0.0384)

1High Value × Tier -0.318
(0.0732)

(1− 1High Value)× Tier -0.165
(0.0237)

B. First Stage

Average of j’s tier in r′ 6= r 0.230 0.230 0.209 0.179 0.166
(0.00512) (0.00512) (0.00500) (0.00484) (0.00484)

Weak IV Fstat 2,012 174.8 1,752 1,370 1,176

Observations 83,232 83,157 83,157 83,157 83,157 83,157
R-squared 0.968 0.799 0.798 0.726 0.806 0.733
Drug FE X X X X X X
Region FE X X X X X X
Time FE X X X
Region FE × Y eart X X
ATC3 FE × Y eart X X

Notes: *** p<0.01, ** p<0.05, * p<0.1. The table reports OLS and 2SLS estimates of various versions of
regression (2), where the the first stage regressions are reported in panel B. Column 1 reports OLS estimates.
Columns 2 to 6 instead report 2SLS estimates using the average tier of generic j in regions other than r
as an instrument for Tierjrt. Column 3 reports separate estimates for high value and other generics, with
“high value” generics defined according to the classification from Chandra, Flack, and Obermeyer (2021)
(see footnote 1). Columns 4 to 6 further include region-specific and drug class-specific time trends to control
for national-wide aggregate demand shocks that would invalidate our instrument.

Column 1 of Table 2 reports the OLS estimates of regression (2), while columns 2-6 the

corresponding 2SLS estimates. A comparison of the OLS estimates in column 1 with the

2SLS estimates in column 2 (around 5 times more negative, with a strong first stage in

panel B) confirms that Tierjrt may be the outcome of endogenous insurers’ decisions and

is unlikely to be independent of unobserved demand shocks. Reassuringly, the estimated

effect of Tierjrt on log(Qjrt) appears to be robust to the inclusion of region-specific and

drug class-specific time trends (columns 4-6). In line with Chandra, Flack, and Obermeyer
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(2021), column 3 illustrates that the effect of Tierjrt on log(Qjrt) is estimated to be stronger

for high value (−0.318) than for other generics (−0.165).

To put these estimates into perspective, we combine them with those from Table 1 and

compute the elasticity of demand with respect to the increase in OOP costs implied by tier

upgrading, ε = ∆Q
Q

OOP
∆OOP

= (exp(α1k) − 1)OOP
β1k

. The average estimated elasticity among all

generics is εall = −0.18, which is in line with the estimate of −0.14 by Einav, Finkelstein, and

Polyakova (2018) for the Medicare Part D population close to the coverage gap. By consider-

ing high value and other generics separately, we obtain εhigh value = −0.12 and εothers = −0.21,

which suggests that the demand for high value generics is less elastic than that for the other

generics. This is consistent with the lower elasticities reported by Einav, Finkelstein, and

Polyakova (2018) for chronic and maintenance drugs, a category that includes high value

drugs.

Counterfactuals. The above evidence suggests that enrollees paid more for generics due

to tier upgrading and that higher cost sharing caused a decrease in their purchased quantities.

In this section, building on the idea of Figure 2 and on our regressions, we evaluate these

changes from the perspective of enrollees’ total spending.

To approximate the total annual OOP spending (OOPS) per-enrollee for purchases of

generic drugs, we use aggregate Medicare Part D prescriber quantities and cost sharing rules

at the plan level, weighted by plan enrolment:

OOPSrt =
1

Nrt

∑
j∈Jrt

(
Qjrt ×

∑
p∈Pjrt

mjprt ×OOPjprt
)

=
1

Nrt

∑
j∈Jrt

(
Qjrt ×OOPjrt

)
,

(3)

where, for each region r and year t: Nrt is the total number of Medicare Part D enrollees; Jrt

is the set of generic drugs available; Pjrt is the set of plans that include generic j; mjprt is the
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observed market share of plan p (among those covering j); Qjrt is the purchased quantity of

generic j; OOPjprt is the OOP cost of generic j in plan p for a 30-day supply in a preferred

pharmacy during the initial coverage period; and OOPjrt is the weighted average of OOPjprt

across plans covering j.

We ask the following question: how did tier upgrading between 2013 and 2017 affect OOP

spending in 2017? Relying on the estimates of regressions (1) and (2) from Tables 1 and 2

(column 3 for both), we simulate OOPS (3) in 2017 given the tier structure observed in 2013.

We exclude from the analysis the generics observed to enter or exit in 2017 as well as those

for which the tier did not change between 2013 and 2017, as for these drugs we would not be

able to compute any counterfactual change. The generics included in our sample represent

74% of all generics and 68% of total purchased quantities of generics in 2017. To simplify

the simulations, we assume that the plan market shares in (3) remained constant at their

observed levels in 2017 when altering the tier structure to that observed in 2013.4

To isolate the contribution of tier shifting to the change in cost sharing between 2013

and 2017, we use the estimates from regression (1) (column 3) and compute counterfactual

OOP costs in 2017 as:

OOP c
jpr17 = ∆̂OOP jpr − β̂1k∆Tier

c
jpr +OOPjpr13, (4)

where ∆̂OOP jpr is the fitted value of regression (1), β̂1k is the corresponding estimate of

β1k, ∆Tiercjpr is a counterfactual shift in tier (e.g., 0 in the absence of a change or −n for a

decrease of n tiers) and OOPjpr13 is the OOP cost observed in 2013. We denote by OOP c
jr17

the weighted average of OOP c
jpr17 across plans using plan enrolment weights, mjpr17.

To account for the effect of tier shifting on demand for generics, we use the estimates of

4In general, this assumption could be relaxed and the variable mjprt in equation (3) endogenized by
estimating a plan level choice model along the lines of Decarolis, Polyakova, and Ryan (2020).
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regression (2) (column 3) and compute counterfactual purchased quantities in 2017 as:

Qc
jr17 = Q̂jr17 exp

(
α̂1k ×∆Tiercjpr

)
, (5)

where Q̂jr17 is the fitted value for 2017 of regression (2), α̂1k is an estimate of α1k, and

∆Tiercjpr is a counterfactual shift in tier.

Combining (3), (4), and (5), we compute the total counterfactual change in OOP spending

in 2017 as if tier shifting between 2013 and 2017 had not taken place:

∆OOPSc
r17 =

1

Nr17

∑
j∈Jr13

(
Q̂jr17ÔOP jr17 −Qc

jr17OOP
c
jr17

)
,

where Jr13 denotes the set of generics available both in 2013 and 2017 and that changed

tier and ÔOP jr17 is computed on the basis of (4) evaluated at ∆Tiercjpr = 0 as ÔOP jr17 =∑
p∈Pr

mjpr17 ×
(

∆̂OOP jpr +OOPjpr13

)
. In words, ∆OOPSc

r17 is the difference between

Q̂jr17ÔOP jr17, the predicted OOPS in 2017 given the tier structure in 2017, andQc
jr17OOP

c
jr17,

the counterfactual OOPS in 2017 given the tier structure in 2013. In evaluating ∆OOPSc
r17,

we use the model’s prediction of the factual OOPS (Q̂jr17ÔOP jr17) rather than the corre-

sponding observed value (Qjr17OOPjr17) to obtain a cleaner comparison with the counter-

factual OOPS (Qc
jr17OOP

c
jr17), which can only be predicted by the model.

While ∆OOPSc
r17 measures the total counterfactual change in OOPS due to higher OOP

costs and implied demand responses, we disentangle the contribution of these channels by

decomposing ∆OOPSc
r17 in two parts. We compute the part of the counterfactual change in

OOPS due to the higher OOP costs implied by tier upgrading between 2013 and 2017 as:

∆OOPSoop
r17 =

1

Nr17

∑
j∈Jr13

Qc
jr17

(
ÔOP jr17 −OOP c

jr17

)
.

We then compute the part of ∆OOPSc
r17 due to the lower purchased quantities implied by
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tier upgrading between 2013 and 2017 as:

∆OOPSq
r17 =

1

Nr17

∑
j∈Jr13

(
Q̂jr17 −Qc

jr17

)
ÔOP jr17,

such that ∆OOPSc
r17 = ∆OOPSoop

r17 + ∆OOPSq
r17.

Table 3 reports the results of the counterfactual, for all drugs (column 1) and separately

for drugs in the high value and in the others category. For each category, we further separate

the effects for drugs that were moved to higher tiers (column “Up”) from the handful that

were moved down (column “Down”). Panel A displays the breakdown of drugs in terms of

number of distinct products and sales.

Panel B presents the effect of tier shifting between 2013 and 2017 on OOP spending in

2017. Compared to a scenario in which the tier structure had remained the same as in 2013,

OOP spending per-enrollee in 2017 would have increased by $76, accounting for two thirds

of the total increase in spending on generics between 2013 and 2017, $116. This corresponds

to an additional $1.5 billions in OOP spending for the Medicare Part D population in 2017.

As expected by their pervasiveness on formularies and their higher prices and tiers, drugs in

the “Others” category that were moved to higher tiers are the largest contributors to these

estimated increases, although upgraded high value drugs also account for an important share

of the change in OOP spending. The total effect on OOP spending is mitigated by a few

drugs that were moved to lower tiers between 2013 and 2017 (the negative change in spending

in the columns denoted by “Down”).

The increase of $76 can be decomposed in two parts. First, if demand had not decreased

in response to the higher OOP costs, OOP spending per-enrollee would have increased by

$100, a third more. Second, the reduction in demand induced by the higher OOP costs

would have led to a decrease in OOP spending per-enrollee by $24, had tier placement not

changed compared to 2013. Thus, despite the low elasticity estimated by our model and
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the literature, the large increase in cost sharing induced a reduction in consumption, which

translated into lower spending as measured by ∆OOPSq
r17. The decomposition of the total

counterfactual change highlights a trade-off between adherence to therapy and spending

and suggests interesting heterogenous effects across drugs and enrollees. An hypothetical

enrollee on anti-diabetics, a class with an estimated perfectly inelastic demand to price

(Einav, Finkelstein, and Polyakova 2018), would have spent $100 more in 2017 in order to

perfectly adhere to therapy. Conversely, an enrollee on anti-hypertensive or β-blockers, two

classes with a more elastic demand despite high mortality benefits, would have cut on drugs

to reduce spending, increasing their health hazards.

Table 3: Counterfactual Change in OOP spending per enrollee

All High Value Others
Up Down Up Down

A. Tier shifting between 2013 and 2017

Drugs (%) 100 8.9 1.5 60.9 2.6
Quantity (%) 100 13.3 7.6 40.2 6.7

B. Change in OOP Spending in 2017 ($)

Total change: ∆OOPSc
r17 75.7 15.8 -10.1 75.0 -4.4

Part due to ∆OOP costs: ∆OOPSoop
r17 99.5 20.4 -10.5 94.8 -4.7

Part due to ∆Quantities: ∆OOPSq
r17 -23.9 -4.7 0.5 -19.8 0.3

Enrolment 2017 19,694,854

Notes: The table reports the counterfactual per-enrollee change in OOP spending on generics in 2017 due
to tier shifting between 2013 and 2017. We restrict the analysis to common drug classes (with more than
100,000 claims over the period) and to generics available both in 2013 and 2017 that changed tier between
2013 and 2017. The counterfactual computations are based on the estimates of regressions (1) and (2) from
Tables 1 and 2 (column 3 for both), and equations (3), (4), and (5). Panel A shows the distribution of
drugs by category (high value and other generics) and tier shifting status between 2013 and 2017. The
difference between 100 and the sum of the last four columns refers to drugs that remained in the same tier
(not reported in the interest of space). Panel B shows the corresponding counterfactual per-enrollee change
in OOP spending on generics in 2017 (∆OOPSc

r17), and its decomposition into the part due to changes in
OOP costs (∆OOPSoop

r17 ) and the part due to changes in quantities (∆OOPSq
r17).
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6 Welfare Implications

In this section, we discuss some of the welfare implications of the observed tier upgrading of

generics from 2013 to 2017. First, we use the adjusted mortality data from Chandra, Flack,

and Obermeyer (2021) to perform a back-of-the-envelope calculation of the consequences

of cutting on high value drugs due to tier upgrading on mortality.5 Our estimates imply

that tier shifting caused a 10% reduction in the consumption of these drugs compared to a

scenario without tier upgrading, which would translate into mortality effects of 3.7% for ACE

inhibitors, thiazide diuretics, and angiotensin-receptor blockers and of 8.2% for β-blockers.

To scale these to the relevant populations, we use the shares of eligible enrollees by class from

Chandra, Flack, and Obermeyer (2021).6 Summing up across the four high values classes,

accounting for the different levels of utilization in the Part D population across them, we

obtain an overall increase in mortality of 5.4%.

In addition to significant increases in spending and possible adverse health consequences

due to reduced adherence to therapy, tier upgrading may have also affected welfare by dis-

torting the optimal cost sharing required to balance risk protection and moral hazard. In

line with the theory of optimal insurance (Feldstein 1973; Besley 1988), Einav, Finkelstein,

and Polyakova (2018) document that, in the period 2007-2011, drugs with higher demand

elasticity to price (that is, more subject to moral hazard) had higher cost sharing due to

placement in higher tiers. Yet, their results suggest lower than optimal average coverage. In

this sense, tier upgrading in the period 2013-2017 may have narrowed the gap and brought

5Among the high value drugs, we exclude antidiabetics, calcium channel blockers, and inhalants, as their
demand is estimated to be almost perfectly inelastic by Einav, Finkelstein, and Polyakova (2018). We are
possibly underestimating the quantity effect on the remaining high value drugs, as our demand model has a
single coefficient for all high value drugs. We also exclude statins, since one of the main drugs in this class,
atorvastatin, was moved to a lower tier.

6We do not use the fraction of beneficiaries by class in 2013 from our data, since it would significantly
overestimate the relevant population: our aggregate data only report the number of beneficiaries at the drug
level, so we would count more than once those that use more than one drug in the same class in the same
year. The shares reported in Chandra, Flack, and Obermeyer (2021) include also branded drugs, so may be
overestimated, but are lower than those in our data and provide a reasonable approximation.
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further reductions in moral hazard. We investigate this possibility and ask whether drugs

with higher demand elasticity were more likely to be moved to higher tiers. By matching

our data to the estimated demand elasticities for common drugs by Einav, Finkelstein, and

Polyakova (2018), we find that the generics moved to higher tiers between 2013 and 2017

tended to have lower rather than higher estimated demand elasticity. This suggests that

tier upgrading, by moving the cost sharing structure further away from optimality, may have

negatively affected welfare beyond reductions in consumption and increases in spending.

7 Conclusions

In this paper, we document that, in the period 2013-2017, Medicare Part D plans systemati-

cally upgraded many generic drugs to higher tiers, with an implied average increase in OOP

spending per-enrollee of $76, or $1.5 billion for the entire Medicare Part D population.

The formulary is a key strategic variable for insurers and changes in tier design are

consistent with the nature of competition in Medicare Part D. As documented by an extensive

literature, premiums are the most salient feature on which consumers compare plans and

insurers compete fiercely over them. Moreover, increased regulatory scrutiny has contributed

to a remarkable stability of premiums over the past years, despite significant growth in

spending for Part D’s catastrophic benefits. Formularies, on the other hand, remain relatively

unregulated, inducing insurers to exploit this flexibility to increase profits.

While sizeable, our estimates are likely to be a lower bound for the total increase in both

private and public spending. A lower effective OOP difference between brand-name and

generics may shift some consumption towards the former (Dafny, Ody, and Schmitt 2017;

Dubois and Lasio 2018) and increase OOP even further. In turn, higher OOP costs may push

some enrollees to the catastrophic threshold at a faster pace, increasing total expenditures

for Medicare. Additionally, lower utilization of high value drugs may lead to a surge in
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hospitalization (Chandra, Gruber, and McKnight 2010; Chandra, Flack, and Obermeyer

2021), with higher costs for both the enrollees and Medicare.

Our results hinge on a number of assumptions. First, given the aggregate nature of our

data, we do not consider substitution across drugs, which may affect health outcomes and

spending. Also, our counterfactuals consider plan market shares to be unaffected by tier

shifting and thus cannot capture potential heterogeneous effects across enrollees. Finally,

we provide back-of-the-envelope welfare computations that rely on estimates from the liter-

ature. All these limitations could be addressed by developing a richer model estimated with

individual-level data, which we leave for future research.
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